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Abstract: The paper studies the response of function with Holling III type and the dynamics of 
predator-prey system in semi-ratio dependent. Based on some mathematical analysis theories, the 
paper makes use of Mawhin's continuation theorem, which gives the existence theorem of periodic 
solution of the system.  In the end, the paper gives a numerical simulation example, which gets the 
validity of the results. 

1. Introduction 
In recent years, predator-prey systems in semi-proportional dependent with functional response 

have attracted more and more researchers attention (see [1-3]) However, we have developed 
biological species that experience steady variation for a long time, which can experience the rapid 
changed in a short period in a regular time. Therefore, there are more studies including impulsive 
differential equations applied to biological problems. Kuno adopt here a different expression to 
incorporate this factor, replacing birth rate b  by the function ))(/()( txNtbx + [4]. In this section, we 
will account the corresponding  predator-prey system with  sparse effect and impulses effect, 
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Where,at time t , ix  is density of population . ,+∈Zk   <<<< kttt 21  are impulse points 
such that +∞=ktlim . Suppose  function RRIk :)(⋅  is continuous. Just like the general theory of 

impulsive differential equations [5], we Suppose that )()( −= kiki txtx  at the points kt  of the solution 
)(txt i , here kt is discontinuous point.  Suppose that 

)( 1H  for all ),0( +∞∈t , )(),(),(),(),(,)( tdtctbtatste  and )(tA  are  strictly positive periodic 
functions with 0>ω ,And these functions are also continuous 、bounded . 

)( 2H   Exists in a positive integer q  such that ikqki II =+ )( , ω+=+ kqk tt . We suppose that 
[ ] { } { }mk tttt ,,,,0 21  =ω  and 0≠kt , here qm = . 

)( 3H  for 01 >+ ikI ,  there exists constants 0≥iI  such that iik II ≤ ,( mk ,2,1 = , 2,1=i ). 
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2. Existence of Periodic Solutions 
In this section, we use Mawhin's continuation theorem to prove the existence of periodic 

solutions of system (1). More details can be referred to [6]. 
Lemma1.([6]) Assume that 
(a) every solution DomLx Ω∂∈ for )1,0(∈λ  , NxLx λ≠ ; 
(b)QNx is not  zero for each KerLx Ω∂∈ ; 
(c)  the brouwer degree { }0,,deg KerLJQN Ω is not equal to zero. 
where, X  and Y  be two Banach spaces,  :L YXDomL →  is a Fredholm mapping of index 

zero , Think about an operator equation NxLx λ= ,  here ]1,0[∈λ  is a parameter.  And suppose 
YN →Ω:  is L - compact on Ω , where Ω  is open bounded in X . Then the equation NxLx =  has 

at least one solution in DomLΩ . 
Theorem 1. If )()( 31 HH − hold, there is at least one positive periodic solution to equation (1). 
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Proof. We can let  

2,1},exp{ == iyx ii                                                                  (2) 

 then the equation (1) becomes 
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Now, we need to show that there exists a domain Ω  that satisfies all the requirements given in 
Lemma 1. we take  

Set ZYDomLL →: , ))(,),(,( 1 mtytyyLy ∆∆′=  , where ]},,;,0[{ 1
1

mttTCyDomL ∈=  and 
ZYN →: . Then Y  and Z  are Banach spaces when they are endowed with the norms 

|)(|sup||||
],0[

txx
t

c
ω∈

=  and 2/122
1

2
1 )||||||(||||),,,(|| mcm ccxccx +++=   and take yLy ′= , 

∫ ∈=
ω

ω 0
,)(1 YydttyPy , 
















+== ∫∑

=

0,,0,)(1),,,(
0

1
1 

ω

ω
duufCCCfQQz

m

k
km .  Let 

∫=
ω

ω 0
)(1 dttuu . 

Then it’s easy to prove L is a Fredholm mapping of index zero.  KerLYP →:  , 
LZZQ Im/: →  denotes projectors, and that N  is L -compact on Ω  for any given open and 

bound subset Ω  in X . 
According to the equation ,NyLy λ=  )1,0(∈λ , assume that Yyyty ∈= ),()( 21  denotes a 

solution of system (4) for a certain )1,0(∈λ . By integrating (3) over the interval ],0[ ω , we obtain 
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From (3),(4),(5), we obtain 
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Let that Ytyty ∈))(),(( 21 ,  there exists ],0[, ωηξ ∈ii such that )(inf)(
],0[

tyy itii ω
ξ

∈
= , =)( iiy η  

)(sup
],0[

tyi
t ω∈

.  By (4), (5) and (8), we have 
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By (4), also have 
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By  (5),  we also have 
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Hence, (8), (9), (10) and (11) imply that |}||,{|sup)(sup 31],0[1],0[ HHty tt ωω ∈∈ <  1: D= ,  

|)(|sup 2],0[ tyt ω∈  242],0[ :},{sup DHHt =< ∈ ω . Clearly, iD , 3,2,1=i  are independent of λ . Denote 

321 DDDD ++= , where 03 >D  is taken sufficiently large such that += ∗∗∗ |ln|||)ln,(ln|| 121 xxx  

32 |ln| Dx <∗ and define }||:||)({ DxYty <∈=Ω . By now we have proved that Ω  satisfies all the 
requirements of Lemma 1. Hence, we derive that system (1) has at least one positive ω - periodic 
solution. The proof is complete. 

3. An Example of Numerical Simulations 
In this section, some numerical examples are given to verify the validity and correctness of the 

theoretical results. For system (1), we take  

,3.01 =kI   ,sin3.02)( tta +=       ,cos5.01)( ttb +=  ,sin1.01)( tts +=  

,2.02 =kI  ,sin2.02.1)( ttA +=    ,sin1.03)( ttd +=   .cos3.08.0)( tte +=  

Obviously, they satisfy )( 1H .  
If 32π=T , then system (1)  has a unique π2 -periodic solution under the conditions )( 4H . (see 

Fig.1).  
Due to the influence of periodic pulse, the influence of pulse is obvious. 

 
Fig.1   32π=T periodic solution              Fig.2    2=T Gui-Chaotic attractor   

If  ,2=T  then )( 3H  isn’t satisfied. Numeric results show that system (1) has still has a global 
attractor which can be a q chaotic strange attractor (see Fig.2). Every solutions of system (1) will 
finally tend to the quasi-periodic solution. 
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